A knot $K$ in a directed graph $D$ is a strongly connected component of size at least two such that there is no arc $(u,v)$ with $u \in V(K)$ and $v\notin V(K)$. Given a directed graph $D=(V,E)$, we study Knot-Free Vertex Deletion (KFVD), where the goal is to remove the minimum number of vertices such that the resulting graph contains no knots. This problem naturally emerges from its application in deadlock resolution since knots are deadlocks in the OR-model of distributed computation. The fastest known exact algorithm in literature for KFVD runs in time $\mathcal{O}^\star(1.576^n)$. In this paper, we present an improved exact algorithm running in time $\mathcal{O}^\star(1.4549^n)$, where $n$ is the number of vertices in $D$. We also prove that the number of inclusion wise minimal knot-free vertex deletion sets is $\mathcal{O}^\star(1.4549^n)$ and construct a family of graphs with $\Omega(1.4422^n)$ minimal knot-free vertex deletion sets


翻译:在有向图 $D=(V,E)$ 中,一个$K$结是指一个强连通分量,其大小至少为两个点,且没有一条有向边 $(u,v)$,其中 $u \in V(K)$ 且 $v\notin V(K)$。给定有向图 $D$,我们研究了无结点顶点删除(KFVD)问题,即删除最小数量的顶点,使结果图不包含结点。该问题自然地衍生自其在死锁解决中的应用,因为结点是分布式计算中的死锁。文献中已知的 KFVD 最快的精确算法运行时间为 $\mathcal{O}^\star(1.576^n)$。在本文中,我们提出了一种改进的精确算法,它的运行时间为 $\mathcal{O}^\star(1.4549^n)$,其中 $n$ 是 $D$ 中的顶点数。我们还证明了包含至少的最小无结点顶点删除集数量为 $\mathcal{O}^\star(1.4549^n)$,并构造了一个具有 $\Omega(1.4422^n)$ 个最小无结点顶点删除集的图族。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
82+阅读 · 2020年12月5日
专知会员服务
52+阅读 · 2020年9月7日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月9日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
82+阅读 · 2020年12月5日
专知会员服务
52+阅读 · 2020年9月7日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员