It is expensive and time-consuming to collect sufficient labeled data for human activity recognition (HAR). Domain adaptation is a promising approach for cross-domain activity recognition. Existing methods mainly focus on adapting cross-domain representations via domain-level, class-level, or sample-level distribution matching. However, they might fail to capture the fine-grained locality information in activity data. The domain- and class-level matching are too coarse that may result in under-adaptation, while sample-level matching may be affected by the noise seriously and eventually cause over-adaptation. In this paper, we propose substructure-level matching for domain adaptation (SSDA) to better utilize the locality information of activity data for accurate and efficient knowledge transfer. Based on SSDA, we propose an optimal transport-based implementation, Substructural Optimal Transport (SOT), for cross-domain HAR. We obtain the substructures of activities via clustering methods and seeks the coupling of the weighted substructures between different domains. We conduct comprehensive experiments on four public activity recognition datasets (i.e. UCI-DSADS, UCI-HAR, USC-HAD, PAMAP2), which demonstrates that SOT significantly outperforms other state-of-the-art methods w.r.t classification accuracy (9%+ improvement). In addition, our mehtod is 5x faster than traditional OT-based DA methods with the same hyper-parameters.


翻译:为人类活动识别收集足够的标签数据(HAR)既费钱又费时。适应领域是跨领域活动识别的一个很有希望的方法。现有方法主要侧重于通过域级、级级或抽样级分布配对来调整跨部域表示方式。然而,它们可能未能在活动数据中捕捉精细化的地方信息。域级和类级匹配过于粗糙,可能导致适应不足,而抽样匹配可能受到噪音的严重影响,并最终导致过度适应。在本文件中,我们提议为域适应(SSSCDA)进行结构层面的下级匹配,以更好地利用活动数据的位置信息,促进准确和高效的知识转让。在SDADA的基础上,我们建议采用基于运输的最佳实施方法,即结构性最佳最佳最佳的优化最佳运输方法(SOT),用于跨领域的最佳方法。我们通过集群方法获取活动亚结构的亚结构,并寻求在不同领域之间加权的亚结构的组合。我们对四种公共活动识别数据集(即UCI-DS-DADS、UHA-DA-A-A-AA-AAAAAA-A-DR-A-ADR-DSA-A-AG-DR-A-A-DR-SDR-DR-DR)进行显著的改进方法,该方法与SDR-DR-A-A-A-A-A-A-A-A-A-A-A-A-A-DR-A-A-DR-B-B-B-B-DR-A-DR-T-AG-T-T-T-DR-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-D-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-D-D-D-D-D-D-T-T-T-T-

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年11月7日
Arxiv
8+阅读 · 2021年5月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员