Imitation learning seeks to circumvent the difficulty in designing proper reward functions for training agents by utilizing expert behavior. With environments modeled as Markov Decision Processes (MDP), most of the existing imitation algorithms are contingent on the availability of expert demonstrations in the same MDP as the one in which a new imitation policy is to be learned. In this paper, we study the problem of how to imitate tasks when there exist discrepancies between the expert and agent MDP. These discrepancies across domains could include differing dynamics, viewpoint, or morphology; we present a novel framework to learn correspondences across such domains. Importantly, in contrast to prior works, we use unpaired and unaligned trajectories containing only states in the expert domain, to learn this correspondence. We utilize a cycle-consistency constraint on both the state space and a domain agnostic latent space to do this. In addition, we enforce consistency on the temporal position of states via a normalized position estimator function, to align the trajectories across the two domains. Once this correspondence is found, we can directly transfer the demonstrations on one domain to the other and use it for imitation. Experiments across a wide variety of challenging domains demonstrate the efficacy of our approach.


翻译:光学学习试图通过利用专家行为来避免设计培训人员的适当奖赏功能的困难。 以Markov 决策程序( MDP)为模型的环境, 现有的多数模仿算法都取决于在新的仿照政策中, 与学习新仿照政策时一样, 在同一 MDP 中, 是否有专家演示。 在本文中, 我们研究当专家和MDP 代理之间存在差异时如何模仿任务的问题。 这些领域之间的差异可能包括不同的动态、 观点或形态; 我们提供了一个新颖的框架来学习这类领域的通信。 重要的是, 与以前的工作不同, 我们使用仅包含专家领域的国家的不匹配和不匹配的轨迹来学习这一函文。 我们使用对州空间和一个域的周期一致性限制来进行这种学习。 此外, 我们通过一个归正的位置测量功能来强制调整各州的时间位置, 以调和两个领域的轨迹。 一旦发现该函文, 我们就可以直接将一个域的演示标本直接转移到另一个域, 挑战其它域的实验功能。

8
下载
关闭预览

相关内容

【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年7月13日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
5+阅读 · 2018年10月23日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
0+阅读 · 2021年7月13日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
5+阅读 · 2018年10月23日
Arxiv
4+阅读 · 2018年4月17日
Top
微信扫码咨询专知VIP会员