In this paper, we consider subgeometric (specifically, polynomial) ergodicity of univariate nonlinear autoregressions with autoregressive conditional heteroskedasticity (ARCH). The notion of subgeometric ergodicity was introduced in the Markov chain literature in 1980s and it means that the transition probability measures converge to the stationary measure at a rate slower than geometric; this rate is also closely related to the convergence rate of $\beta$-mixing coefficients. While the existing literature on subgeometrically ergodic autoregressions assumes a homoskedastic error term, this paper provides an extension to the case of conditionally heteroskedastic ARCH-type errors, considerably widening the scope of potential applications. Specifically, we consider suitably defined higher-order nonlinear autoregressions with possibly nonlinear ARCH errors and show that they are, under appropriate conditions, subgeometrically ergodic at a polynomial rate. An empirical example using energy sector volatility index data illustrates the use of subgeometrically ergodic AR-ARCH models.
翻译:本文探讨了自回归条件异方差下的非线性单变量自回归模型的次几何(特别是多项式)收敛性。次几何收敛性是20世纪80年代的马尔科夫链文献中引入的概念,意味着转移概率测度以比几何收敛慢的速度收敛到稳态测度;这个慢收敛速率也与β-混合系数的收敛速率密切相关。现有的关于次几何收敛自回归模型的文献假定误差项是同方差的,本文提供了条件异方差下的拓展研究,从而大大拓宽了潜在应用范围。具体来说,我们考虑了适当定义的高阶非线性自回归模型,其误差项有可能是非线性条件异方差,证明它们在适当条件下次几何收敛,且收敛速率是多项式级别的。以能源领域波动率指数数据为例,说明了次几何收敛自回归-条件异方差模型的应用。