State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in 'normal' operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.
翻译:国家估计对电力系统运行和控制意义重大,然而,设计完善的虚假数据注入攻击可以利用常规残余数据检测方法中的盲点,协调地操纵测量,从而影响电网的安全运行和经济发送。在本文中,我们提出基于自动编码神经网络的探测方法。通过对网络进行关于“正常”运行数据所固有的依赖性的培训,它有效地克服了动力系统袭击探测所固有的不平衡培训数据的挑战。为了评估拟议机制的探测性能,我们对IEEE 118-Bus动力系统进行了一系列实验。实验表明,拟议的自动编码探测器在各种袭击情景下展示了可靠的检测性能。