IoT application domains, device diversity and connectivity are rapidly growing. IoT devices control various functions in smart homes and buildings, smart cities, and smart factories, making these devices an attractive target for attackers. On the other hand, the large variability of different application scenarios and inherent heterogeneity of devices make it very challenging to reliably detect abnormal IoT device behaviors and distinguish these from benign behaviors. Existing approaches for detecting attacks are mostly limited to attacks directly compromising individual IoT devices, or, require predefined detection policies. They cannot detect attacks that utilize the control plane of the IoT system to trigger actions in an unintended/malicious context, e.g., opening a smart lock while the smart home residents are absent. In this paper, we tackle this problem and propose ARGUS, the first self-learning intrusion detection system for detecting contextual attacks on IoT environments, in which the attacker maliciously invokes IoT device actions to reach its goals. ARGUS monitors the contextual setting based on the state and actions of IoT devices in the environment. An unsupervised Deep Neural Network (DNN) is used for modeling the typical contextual device behavior and detecting actions taking place in abnormal contextual settings. This unsupervised approach ensures that ARGUS is not restricted to detecting previously known attacks but is also able to detect new attacks. We evaluated ARGUS on heterogeneous real-world smart-home settings and achieve at least an F1-Score of 99.64% for each setup, with a false positive rate (FPR) of at most 0.03%.


翻译:IOT 应用域、 设备多样性和连通性正在迅速增长。 IOT 设备控制了智能家庭和建筑、 智能城市和智能工厂中的各种功能,使这些装置成为攻击者吸引的目标。 另一方面, 不同应用情景和装置固有异质性的巨大变异性使得可靠地检测异常的 IOT 设备行为并区分这些与良性行为非常具有挑战性。 现有的袭击探测方法大多限于直接损害单个 IOT 设备的袭击,或需要预先确定的检测政策。 它们无法检测利用 IOT 系统控制平面在意外/恶意环境下触发行动的袭击, 例如, 在智能家居居民不在场的情况下打开智能锁。 在本文中,我们处理这一问题,并提议建立第一个自学的入侵探测系统,用以检测对IOT 环境进行背景攻击,其中攻击者恶意地援引 IOT 设备行动达到其目标。 ARUS 监测基于IOT 设备在环境中的状态和行动的背景环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境,,, 一个不被不监测,, 一个在深度的深度的深度的深度环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境评估,,, 的深度环境环境攻击环境攻击环境攻击环境攻击环境环境环境环境环境环境环境环境环境攻击环境攻击环境攻击环境评估,,, 的深度地地地地地地地地地地点,,, 环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境环境

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员