Autoencoder (AE) is a neural network (NN) architecture that is trained to reconstruct an input at its output. By measuring the reconstruction errors of new input samples, AE can detect anomalous samples deviated from the trained data distribution. The key to success is to achieve high-fidelity reconstruction (HFR) while restricting AE's capability of generalization beyond training data, which should be balanced commonly via iterative re-training. Alternatively, we propose a novel framework of AE-based anomaly detection, coined HFR-AE, by projecting new inputs into a subspace wherein the trained AE achieves HFR, thereby increasing the gap between normal and anomalous sample reconstruction errors. Simulation results corroborate that HFR-AE improves the area under receiver operating characteristic curve (AUROC) under different AE architectures and settings by up to 13.4% compared to Vanilla AE-based anomaly detection.


翻译:自动编码器(AE)是一个神经网络(NN)结构,经过培训可以重建输出输入。通过测量新输入样本的重建错误,AE可以检测出偏离经过培训的数据分布的异常样本。成功的关键是实现高度忠诚重建(HFR),同时将AE的概括能力限制在培训数据之外,而培训数据通常应通过迭代再培训加以平衡。或者,我们提议一个基于AE的异常现象探测新框架,由HFR-AE共同创建,将新输入投射到一个子空间,由受过培训的AE实现HFR, 从而扩大正常与异常样本重建错误之间的差距。模拟结果证实,HFR-AE将不同AE结构下接收器运行特征曲线的面积改进到13.4%,而Vanilla AE的异常现象检测则为13.4%。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员