Cauchy problem for second-order nonlinear evolution equation is considered. This equation represents the abstract generalization of the Ball integro-differential equation. The general nonlinear case concerning terms of the equation which include a square of a norm of a gradient is considered. Three-layer semi-discrete scheme is proposed for numerical computations. In this scheme, approximation of nonlinear terms that are dependent on the gradient is done using integral averaging. Here is proved that solution of the nonlinear discrete problem and its corresponding first-order difference is uniformly bounded. For the solution of corresponding linearized discrete problem high-order, a priori estimation is obtained using two-variable Chebyshev polynomials. Based on this estimation stability of the nonlinear discrete problem is shown. For smooth solutions, it is obtained estimation for the error of the approximate solution. An approximate solution for each time step we apply the iteration method. The convergence of the iteration method is proved.
翻译:二阶非线性进化方程式的棘手问题得到了考虑。 此方程式代表了 Ball Integro- 差异化方程式的抽象概括化。 考虑了包含梯度规范平方的方程式条件的非线性普通案例。 提出了数值计算方法的三层半分解办法。 在这个方法中, 使用整体平均法对取决于梯度的非线性术语进行近似化。 这里证明了非线性离散问题及其相应的第一阶差异的解决方案是一致的。 对于相应的线性离散问题高阶的解决方案, 使用两种可变的Chebyshev 多元数值获得预先估算。 基于非线性离散问题稳定性的估算, 展示了非线性分解问题的稳定性。 对于平滑的解决方案, 获取了对近似性解决方案错误的估计。 每个步骤的近似解决办法是采用循环法的。 迭代法方法的趋同性方法的趋同性得到了证明。