A solution is proposed to a longstanding open problem in kinetic theory, namely, given any set of realizable velocity moments up to order 2n, a closure for the moment of order 2n+1 is constructed for which the moment system found from the free-transport term in the one-dimensional (1-D) kinetic equation is globally hyperbolic and in conservative form. In prior work, the hyperbolic quadrature method of moments (HyQMOM) was introduced to close this moment system up to fourth order (n $\le$ 2). Here, HyQMOM is reformulated and extended to arbitrary even-order moments. The HyQMOM closure is defined based on the properties of the monic orthogonal polynomials Qn that are uniquely defined by the velocity moments up to order 2n -- 1. Thus, HyQMOM is strictly a moment closure and does not rely on the reconstruction of a velocity distribution function with the same moments. On the boundary of moment space, n double roots of the characteristic polynomial P2n+1 are the roots of Qn, while in the interior, P 2n+1 and Qn share n roots. The remaining n + 1 roots of P2n+1 bound and separate the roots of Qn. An efficient algorithm, based on the Chebyshev algorithm, for computing the moment of order 2n + 1 from the moments up to order 2n is developed. The analytical solution to a 1-D Riemann problem is used to demonstrate convergence of the HyQMOM closure with increasing n.
翻译:向一个长期开放的动能理论问题提出一个解决方案, 即, 如果在 2n 之前的任何一系列可变速度时刻到 2n 顺序, 2n+1 时刻的关闭将被构建, 因为一维( 1- D) 动能方程式中从自由运输术语找到的瞬时系具有全球超曲和保守的形式。 在先前的工作中, 双曲瞬时的四斗法( HyQMOM) 被引入了将这一瞬时系统关闭到第四顺序( n$\le$ 2 ) 。 这里, HyQMOM 被重新改造并扩展到任意的偶数时刻。 HyQMOM 关闭基于单维( 2n+ D) 的单维或多维多维多维多维1 状态的状态的特性, 其定义基于 2n 维空空空空空空空空 。 在内部、 Pn+ Rialqual 和 Riqal Qral 上, 以 Qrm Q 1 快速 的平至 平至 平至 直径 平至 平 平 平至 平至 平至 平平平平平平平平平至 平 平至平至平平平平至平平平平平平平平至平平平的平至平至平平平平平平平平的平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平 。