In this paper, we consider a second-order scalar auxiliary variable (SAV) Fourier spectral method to solve the nonlinear fractional generalized wave equation. Unconditional energy conservation or dissipation properties of the fully discrete scheme are first established. Next, we utilize the temporal-spatial error splitting argument to obtain unconditional optimal error estimate of the fully discrete scheme, which overcomes time-step restrictions caused by strongly nonlinear system, or the restrictions that the nonlinear term needs to satisfy the assumption of global Lipschitz condition in all previous works for fractional undamped or damped wave equations. Finally, some numerical experiments are presented to confirm our theoretical analysis.
翻译:在本文中, 我们考虑使用二级的天平辅助变量 Fourier 光谱方法来解决非线性分数通用波等式。 首次确定了完全离散的波等式的不附带条件的节能或散射特性。 其次, 我们利用时间空间差分辨来获得完全离散的机率的无条件最佳误差估计, 完全离散的机率已经克服了由强烈的非线性系统造成的时间步骤限制, 或者非线性术语需要满足全球Lipschitz条件的假设的限制, 在以前所有关于分数式未加印或倾斜的波等式的工程中, 。 最后, 我们提出了一些数字实验, 以证实我们的理论分析 。