In this paper, we study the nonlinear inverse problem of estimating the spectrum of a system matrix, that drives a finite-dimensional affine dynamical system, from partial observations of a single trajectory data. In the noiseless case, we prove an annihilating polynomial of the system matrix, whose roots are a subset of the spectrum, can be uniquely determined from data. We then study which eigenvalues of the system matrix can be recovered and derive various sufficient and necessary conditions to characterize the relationship between the recoverability of each eigenvalue and the observation locations. We propose various reconstruction algorithms, with theoretical guarantees, generalizing the classical Prony method, ESPIRIT, and matrix pencil method. We test the algorithms over a variety of examples with applications to graph signal processing, disease modeling and a real-human motion dataset. The numerical results validate our theoretical results and demonstrate the effectiveness of the proposed algorithms, even when the data did not follow an exact linear dynamical system.
翻译:在本文中,我们研究了估算系统矩阵频谱的非线性反向问题,该矩阵通过对单一轨迹数据进行部分观测,驱动一个有限维面的松动动态系统。在无噪音的案例中,我们证明系统矩阵的根部是频谱的一个子集,从数据中可以独有地确定系统矩阵的断裂性多元性。然后我们研究系统矩阵的哪些元值可以回收,并得出各种足够和必要的条件,以说明每个电子值的可恢复性和观察地点之间的关系。我们提出了各种重建算法,并附有理论保证,概括了古典的普罗尼法、ESPIRIT和矩阵铅笔法。我们用图表信号处理、疾病建模和真实人类运动数据集等各种应用来测试这些算法。数字结果证实了我们的理论结果,并展示了拟议算法的有效性,即使数据没有遵循精确的线性动态系统。