Graph neural networks (GNNs) have gained traction in high-energy physics (HEP) for their potential to improve accuracy and scalability. However, their resource-intensive nature and complex operations have motivated the development of symmetry-equivariant architectures. In this work, we introduce EuclidNet, a novel symmetry-equivariant GNN for charged particle tracking. EuclidNet leverages the graph representation of collision events and enforces rotational symmetry with respect to the detector's beamline axis, leading to a more efficient model. We benchmark EuclidNet against the state-of-the-art Interaction Network on the TrackML dataset, which simulates high-pileup conditions expected at the High-Luminosity Large Hadron Collider (HL-LHC). Our results show that EuclidNet achieves near-state-of-the-art performance at small model scales (<1000 parameters), outperforming the non-equivariant benchmarks. This study paves the way for future investigations into more resource-efficient GNN models for particle tracking in HEP experiments.
翻译:图神经网络在高能物理中已经开始受到关注,因为它们能够提高准确性和可扩展性。但是,它们资源密集型的特性和复杂的操作已经促使人们开发对称等变架构。在这项工作中,我们引入了EuclidNet,这是一种新颖的对称等变的图神经网络,用于带电粒子跟踪。 EuclidNet利用碰撞事件的图形表示,并在相对于探测器的平行轴的旋转对称下执行操作,从而导致更高效的模型。我们在TrackML数据集上将EuclidNet与最先进的Interaction Network进行了基准测试,该数据集模拟在高亮度大型强子对撞机上预期的高堆叠条件。我们的结果表明,在小型模型尺寸(<1000个参数)下,EuclidNet能够实现接近最佳性能,并且优于非等变基准结果。这项研究为未来调查更具资源效益的用于高能物理实验中粒子跟踪的图神经网络模型铺平了道路。