Left atrial (LA) segmentation from late gadolinium enhanced magnetic resonance imaging (LGE MRI) is a crucial step needed for planning the treatment of atrial fibrillation. However, automatic LA segmentation from LGE MRI is still challenging, due to the poor image quality, high variability in LA shapes, and unclear LA boundary. Though deep learning-based methods can provide promising LA segmentation results, they often generalize poorly to unseen domains, such as data from different scanners and/or sites. In this work, we collect 210 LGE MRIs from different centers with different levels of image quality. To evaluate the domain generalization ability of models on the LA segmentation task, we employ four commonly used semantic segmentation networks for the LA segmentation from multi-center LGE MRIs. Besides, we investigate three domain generalization strategies, i.e., histogram matching, mutual information based disentangled representation, and random style transfer, where a simple histogram matching is proved to be most effective.
翻译:末端 ⁇ 增强磁共振成像(LGE MRI)的左侧偏移(LA)截断是规划处理试验纤维化的关键步骤。然而,由于图像质量低、LA形状差异性高、LA边界不明确,LGE MRI的自动偏移(LA)仍具有挑战性。尽管深层次的学习方法可以提供有希望的LA分割结果,但它们往往向看不见的领域(如不同扫描仪和/或站点的数据)概括不善。在这项工作中,我们从不同图像质量水平的不同中心收集了210 LGE MRIS(LGE MRI)数据。为了评估LA分区任务模型的域化能力,我们使用了四个常用的LA分区分割网。此外,我们调查了三种域的统化战略,即直方图匹配、基于分解的相互信息代表以及随机式传输,其中简单的直方图匹配被证明最为有效。