Medical coding translates professionally written medical reports into standardized codes, which is an essential part of medical information systems and health insurance reimbursement. Manual coding by trained human coders is time-consuming and error-prone. Thus, automated coding algorithms have been developed, building especially on the recent advances in machine learning and deep neural networks. To solve the challenges of encoding lengthy and noisy clinical documents and capturing code associations, we propose a multitask recalibrated aggregation network. In particular, multitask learning shares information across different coding schemes and captures the dependencies between different medical codes. Feature recalibration and aggregation in shared modules enhance representation learning for lengthy notes. Experiments with a real-world MIMIC-III dataset show significantly improved predictive performance.
翻译:医疗编码将专业书面医疗报告转化为标准化的编码,这是医疗信息系统和医疗保险偿还的基本部分。训练有素的人类编码员的手工编码耗费时间,容易出错。因此,已经开发了自动编码算法,特别是在机器学习和深神经网络的最新进展的基础上。为了解决对冗长和吵闹的临床文件和代码协会进行编码的挑战,我们建议建立一个多任务重新校准的聚合网络。特别是,多任务学习网络在不同编码方案之间共享信息,并捕捉不同医疗编码之间的依赖关系。在共享模块中,特性的重新校正和汇总加强了长音符的代号学习。与现实世界MIMIC-III数据集的实验显示预测性能显著改善。