We consider a retailer running a switchback experiment for the price of a single product, with infinite supply. In each period, the seller chooses a price $p$ from a set of predefined prices that consist of a reference price and a few discounted price levels. The goal is to estimate the demand gradient at the reference price point, with the goal of adjusting the reference price to improve revenue after the experiment. In our model, in each period, a unit mass of buyers arrives on the market, with values distributed based on a time-varying process. Crucially, buyers are forward looking with a discounted utility and will choose to not purchase now if they expect to face a discounted price in the near future. We show that forward-looking demand introduces bias in naive estimators of the demand gradient, due to intertemporal interference. Furthermore, we prove that there is no estimator that uses data from price experiments with only two price points that can recover the correct demand gradient, even in the limit of an infinitely long experiment with an infinitesimal price discount. Moreover, we characterize the form of the bias of naive estimators. Finally, we show that with a simple three price level experiment, the seller can remove the bias due to strategic forward-looking behavior and construct an estimator for the demand gradient that asymptotically recovers the truth.
翻译:暂无翻译