We propose the fully differentiable $\nabla$-RANSAC.It predicts the inlier probabilities of the input data points, exploits the predictions in a guided sampler, and estimates the model parameters (e.g., fundamental matrix) and its quality while propagating the gradients through the entire procedure. The random sampler in $\nabla$-RANSAC is based on a clever re-parametrization strategy, i.e.\ the Gumbel Softmax sampler, that allows propagating the gradients directly into the subsequent differentiable minimal solver. The model quality function marginalizes over the scores from all models estimated within $\nabla$-RANSAC to guide the network learning accurate and useful probabilities.$\nabla$-RANSAC is the first to unlock the end-to-end training of geometric estimation pipelines, containing feature detection, matching and RANSAC-like randomized robust estimation. As a proof of its potential, we train $\nabla$-RANSAC together with LoFTR, i.e. a recent detector-free feature matcher, to find reliable correspondences in an end-to-end manner. We test $\nabla$-RANSAC on a number of real-world datasets on fundamental and essential matrix estimation. It is superior to the state-of-the-art in terms of accuracy while being among the fastest methods. The code and trained models will be made public.
翻译:我们提议了完全不同的 $nabla$-RANSAC 。 它预测了输入数据点的不可测性, 利用了在导引取样器中的预测, 并估算了模型参数( 如基本矩阵) 及其质量, 同时在整个程序中推广了梯度。 $\nabla$- RANSAC 随机取样器是基于聪明的重新校正战略, 即:\ gumbel Softmax 取样器, 从而能够将梯度直接扩散到随后可变最低精确度。 模型质量功能将所有模型中估计的分数( 如基本矩阵矩阵矩阵矩阵矩阵模型) 排挤到在$nabla$- RASAC 中, 指导网络学习准确性和有用的概率。 $\ nnabla$- RANNSAC 随机抽样器是第一个启动对测距估计管道的端对端培训, 包含特征检测、 匹配和 RANNSAC 随机数的精确度估计。 作为其潜力的证明, 我们将用最新的测试方式, 检测到最新的测试方式。