Qualitative reasoning is an important subfield of artificial intelligence where one describes relationships with qualitative, rather than numerical, relations. Many such reasoning tasks, e.g., Allen's interval algebra, can be solved in $2^{O(n \cdot \log n)}$ time, but single-exponential running times $2^{O(n)}$ are currently far out of reach. In this paper we consider single-exponential algorithms via a multivariate analysis consisting of a fine-grained parameter $n$ (e.g., the number of variables) and a coarse-grained parameter $k$ expected to be relatively small. We introduce the classes FPE and XE of problems solvable in $f(k) \cdot 2^{O(n)}$, respectively $f(k)^n$, time, and prove several fundamental properties of these classes. We proceed by studying temporal reasoning problems and (1) show that the Partially Ordered Time problem of effective width $k$ is solvable in $16^{kn}$ time and is thus included in XE, and (2) that the network consistency problem for Allen's interval algebra with no interval overlapping with more than $k$ others is solvable in $(2nk)^{2k} \cdot 2^{n}$ time and is included in FPE. Our multivariate approach is in no way limited to these to specific problems and may be a generally useful approach for obtaining single-exponential algorithms.
翻译:定性推理是人工智能的一个重要的子领域, 其中一个人可以描述与质量而非数字关系的关系。 许多这样的推理任务, 例如 Allen 的间隔代数, 可以用$2 =O( n) 美元解决, 但是单荷运行乘以 2 ⁇ O( n) $ 目前远不能达到 。 在本文中, 我们通过由精细精细精细精细的参数 $n (例如变量数量) 和粗微的参数 $k = 等值 。 许多这样的推理任务, 例如 Allen 的间距代数 = = 美元 。 我们用 $2 (k) 来介绍可溶解问题的 FPE 和 XE 类 等级, 分别是 $( k) 美元, 时间和 证明这些类别的一些基本特性。 我们通过研究时间推理问题, 和 (1) 显示, 有效宽度 $k} 部分定时的问题, 在 16 =k $ ( =) $ 2 的网络中是可溶解的, =xx =xxx 时间, lexxxxxxx 。 lex lex lex lex lex lex lex lex lex lexxxxxxxxxxx lexx lex lex lexxxx lex lexxxxxxxx lexxxxxxxxxxx lex 。