Weight sharing promises to make neural architecture search (NAS) tractable even on commodity hardware. Existing methods in this space rely on a diverse set of heuristics to design and train the shared-weight backbone network, a.k.a. the super-net. Since heuristics substantially vary across different methods and have not been carefully studied, it is unclear to which extent they impact super-net training and hence the weight-sharing NAS algorithms. In this paper, we disentangle super-net training from the search algorithm, isolate 14 frequently-used training heuristics, and evaluate them over three benchmark search spaces. Our analysis uncovers that several commonly-used heuristics negatively impact the correlation between super-net and stand-alone performance, whereas simple, but often overlooked factors, such as proper hyper-parameter settings, are key to achieve strong performance. Equipped with this knowledge, we show that simple random search achieves competitive performance to complex state-of-the-art NAS algorithms when the super-net is properly trained.
翻译:即使在商品硬件上,也有可能进行神经结构搜索(NAS ) 。 这个空间的现有方法依靠一套多种多样的累赘方法来设计和训练共同重量的主干网( a.k.a.super-net ) 。 由于超网使用的方法差异很大,而且没有仔细研究,因此不清楚它们在多大程度上影响超级网培训,从而影响重力共享NAS算法。 在本文中,我们把超级网培训与搜索算法脱钩,分离了14个经常使用的培训超网,并评估了3个基准搜索空间。我们的分析发现,一些常用的超网理论对超级网和独立运行的相互关系产生了负面影响,而一些简单但经常被忽视的因素,例如适当的超参数设置,是取得强性能的关键。我们利用这一知识来证明,当超级网得到适当培训时,简单的随机搜索能够取得复杂的国家网算法的竞争性性能。