The normal inverse Gaussian (NIG) and generalized asymmetric Laplace (GAL) distributions can be seen as skewed and semi-heavy-tailed extensions of the Gaussian distribution. Models driven by these more flexible noise distributions are then regarded as flexible extensions of simpler Gaussian models. Inferential procedures tend to overestimate the degree of non-Gaussianity in the data and therefore we propose controlling the flexibility of these non-Gaussian models by adding sensible priors in the inferential framework that contract the model towards Gaussianity. In our venture to derive sensible priors, we also propose a new intuitive parameterization of the non-Gaussian models and discuss how to implement them efficiently in $Stan$. The methods are derived for a generic class of non-Gaussian models that include spatial Mat\'ern fields, autoregressive models for time series, and simultaneous autoregressive models for aerial data. The results are illustrated with a simulation study and geostatistics application, where priors that penalize model complexity were shown to lead to more robust estimation and give preference to the Gaussian model, while at the same time allowing for non-Gaussianity if there is sufficient evidence in the data.
翻译:正常的Gausian(NIG)和普遍不对称拉普尔(GAL)分布的正常反向(Gausian)和普遍不对称拉普特(GAL)分布可视为高山分布的偏斜和半重尾扩展。由这些更灵活的噪音分布模式驱动的模型随后被视为更简单的高山模型的灵活扩展。推断程序往往高估数据中非古西兰非古西兰度的程度,因此我们提议控制这些非古西兰模式的灵活性,在将模型承包给高山的推断框架中增加合理的前缀。在我们为获得合理前缀而冒的风险中,我们还提议对非古西兰模式进行新的直观参数化,并讨论如何有效地以斯坦元执行这些模型。为非古西非古西模式的普通类别制定了方法,其中包括空间马特欧域、时间序列的自动递增模型和航空数据同步自动递增模型。结果通过模拟研究和地理统计学应用加以说明,在这种模型中,在以往的模型中,如果允许精确性模型使高基数据具有较强的精度,那么的复杂度,那么高基度,那么,那么,那么,则将数据推为不精确的模型推。