We present $O(m^3)$ algorithms for specifying the support of minimum-weight words of extended binary BCH codes of length $n=2^m$ and designed distance $d(m,s,i):=2^{m-1-s}-2^{m-1-i-s}$ for some values of $m,i,s$, where $m$ may grow to infinity. The support is specified as the sum of two sets: a set of $2^{2i-1}-2^{i-1}$ elements, and a subspace of dimension $m-2i-s$, specified by a basis. In some detail, for designed distance $6\cdot 2^j$, we have a deterministic algorithm for even $m\geq 4$, and a probabilistic algorithm with success probability $1-O(2^{-m})$ for odd $m>4$. For designed distance $28\cdot 2^j$, we have a probabilistic algorithm with success probability $\geq 1/3-O(2^{-m/2})$ for even $m\geq 6$. Finally, for designed distance $120\cdot 2^j$, we have a deterministic algorithm for $m\geq 8$ divisible by $4$. We also present a construction via Gold functions when $2i|m$. Our construction builds on results of Kasami and Lin (IEEE T-IT, 1972), who proved that for extended binary BCH codes of designed distance $d(m,s,i)$, the minimum distance equals the designed distance. Their proof makes use of a non-constructive result of Berlekamp (Inform. Contrl., 1970), and a constructive ``down-conversion theorem'' that converts some words in BCH codes to lower-weight words in BCH codes of lower designed distance. Our main contribution is in replacing the non-constructive argument of Berlekamp by a low-complexity algorithm. In one aspect, we extends the results of Grigorescu and Kaufman (IEEE T-IT, 2012), who presented explicit minimum-weight words for designed distance $6$ (and hence also for designed distance $6\cdot 2^j$, by a well-known ``up-conversion theorem''), as we cover more cases of the minimum distance. However, the minimum-weight words we construct are not affine generators for designed distance $>6$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员