We present a novel sampling-based method for estimating probabilities of rare or failure events. Our approach is founded on the Ensemble Kalman filter (EnKF) for inverse problems. Therefore, we reformulate the rare event problem as an inverse problem and apply the EnKF to generate failure samples. To estimate the probability of failure, we use the final EnKF samples to fit a distribution model and apply Importance Sampling with respect to the fitted distribution. This leads to an unbiased estimator if the density of the fitted distribution admits positive values within the whole failure domain. To handle multi-modal failure domains, we localise the covariance matrices in the EnKF update step around each particle and fit a mixture distribution model in the Importance Sampling step. For affine linear limit-state functions, we investigate the continuous-time limit and large time properties of the EnKF update. We prove that the mean of the particles converges to a convex combination of the most likely failure point and the mean of the optimal Importance Sampling density if the EnKF is applied without noise. We provide numerical experiments to compare the performance of the EnKF with Sequential Importance Sampling.


翻译:我们提出了一个基于抽样的新方法来估计稀有或故障事件的概率。 我们的方法建立在反向问题的 Ensemble Kalman 过滤器( EnKF) 上。 因此, 我们重新将稀有事件问题重新定位为反向问题, 并应用 EnKF 来生成失败样本。 为了估计失败概率, 我们使用最后的 EnKF 样本来适应一个分布模型, 并对合适的分布进行重要性取样。 如果安装的分布器的密度在整个失败域内都包含正值, 则导致一个公正的估计值。 要处理多式故障域, 我们将 EnKF 中每个粒子的相近步点定位为本地化, 并适合重要性取样步骤的混合分布模式。 对于偏切线性限制状态函数, 我们用 EnKF 更新的连续时间限制和大时间属性进行调查。 我们证明, 如果应用 EnKF 时没有噪音,, 粒子的平均值会与最有可能的失败点的共轴组合, 以及 最优化的粘度密度密度密度的平均值相比较。 我们提供数字实验, 将Smquequequeal。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员