Determining whether saddle points exist or are approximable for nonconvex-nonconcave problems is usually intractable. We take a step towards understanding certain nonconvex-nonconcave minimax problems that do remain tractable. Specifically, we study minimax problems cast in geodesic metric spaces, which provide a vast generalization of the usual convex-concave saddle point problems. The first main result of the paper is a geodesic metric space version of Sion's minimax theorem; we believe our proof is novel and transparent, as it relies on Helly's theorem only. In our second main result, we specialize to geodesically complete Riemannian manifolds: we devise and analyze the complexity of first-order methods for smooth minimax problems.
翻译:确定马鞍是否存在或对于非混凝土问题来说是近似于非混凝土问题通常难以解决。 我们向了解某些非混凝土非混凝土小型算法问题迈出了一步,这些问题仍然可以解决。 具体地说,我们研究了在大地测量测量空间所投的迷你式问题,这为通常的混凝土马鞍问题提供了广泛的概括性。 论文的第一项主要成果是Sion迷你马克斯理论的大地测量空间版本; 我们认为,我们的证据是新颖和透明的,因为它只依赖Helly的理论。 在我们的第二个主要结果中,我们专门研究在地理测量上完成里伊曼人方形的问题:我们设计并分析顺利解决小型算盘问题的第一阶方法的复杂性。