A Morley-Wang-Xu (MWX) element method with a simply modified right hand side is proposed for a fourth order elliptic singular perturbation problem, in which the discrete bilinear form is standard as usual nonconforming finite element methods. The sharp error analysis is given for this MWX element method. And the Nitsche's technique is applied to the MXW element method to achieve the optimal convergence rate in the case of the boundary layers. An important feature of the MWX element method is solver-friendly. Based on a discrete Stokes complex in two dimensions, the MWX element method is decoupled into one Lagrange element method of Poisson equation, two Morley element methods of Poisson equation and one nonconforming $P_1$-$P_0$ element method of Brinkman problem, which implies efficient and robust solvers for the MWX element method. Some numerical examples are provided to verify the theoretical results.
翻译:对于第四顺序椭圆单形扰动问题,建议采用摩利-Wang-Xu(MWX)元素法,该元素法采用简单修改右手边,其中离散双线形与通常的不相容限定元素法一样标准。对MWX元素法进行了尖锐的错误分析。Nitsche的技术适用于MXW元素法,以在边界层中达到最佳趋同率。MWX元素法的一个重要特征是方便求解器。根据两个维度的离散斯托克斯复合体,MWX元素法被分解成Poisson方程式的一种拉格朗元素法、Poisson方程式的两种Morley元素法和布林克曼问题的一种不相容的元P_1美元-P_0美元元素法,这意味着MWX元素法的高效和稳健固的求解器。提供了一些数字例子,以核实理论结果。