A Morley-Wang-Xu (MWX) element method with a simply modified right hand side is proposed for a fourth order elliptic singular perturbation problem, in which the discrete bilinear form is standard as usual nonconforming finite element methods. The sharp error analysis is given for this MWX element method. And the Nitsche's technique is applied to the MXW element method to achieve the optimal convergence rate in the case of the boundary layers. An important feature of the MWX element method is solver-friendly. Based on a discrete Stokes complex in two dimensions, the MWX element method is decoupled into one Lagrange element method of Poisson equation, two Morley element methods of Poisson equation and one nonconforming $P_1$-$P_0$ element method of Brinkman problem, which implies efficient and robust solvers for the MWX element method. Some numerical examples are provided to verify the theoretical results.


翻译:对于第四顺序椭圆单形扰动问题,建议采用摩利-Wang-Xu(MWX)元素法,该元素法采用简单修改右手边,其中离散双线形与通常的不相容限定元素法一样标准。对MWX元素法进行了尖锐的错误分析。Nitsche的技术适用于MXW元素法,以在边界层中达到最佳趋同率。MWX元素法的一个重要特征是方便求解器。根据两个维度的离散斯托克斯复合体,MWX元素法被分解成Poisson方程式的一种拉格朗元素法、Poisson方程式的两种Morley元素法和布林克曼问题的一种不相容的元P_1美元-P_0美元元素法,这意味着MWX元素法的高效和稳健固的求解器。提供了一些数字例子,以核实理论结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员