High-order numerical methods are applied to the shallow-water equations on the sphere. A space-time tensor formalism is used to express the equations of motion covariantly and to describe the geometry of the rotated cubed-sphere grid. The spatial discretization is done with the direct flux reconstruction method, which is an alternative formulation to the Discontinuous Galerkin approach. The equations of motion are solved in differential form and the resulting discretization is free from quadrature rules. It is well known that the time step of traditional explicit methods is limited by the phase speed of the fastest waves. Exponential time integration schemes remove this stability restriction and allow larger time steps. New multistep exponential propagation iterative methods of orders 4, 5 and 6 are introduced. The complex-step approximation of the Jacobian is applied to the Krylov-based KIOPS (Krylov with incomplete orthogonalization procedure solver) algorithm for computing matrix-vector products with {\varphi}-functions. Results are evaluated using standard benchmarks.
翻译:对球体上的浅水方程式应用了高序数字方法。 使用时空强度形式来表达运动的方程式, 并描述旋转立方体孔格的几何形状。 空间分解方法采用直接通量重建方法, 这是不连续的加列尔金方法的一种替代配方。 运动方程式以不同的形式解析, 由此产生的离析不受二次规则的约束。 众所周知, 传统明确方法的时间步骤受最快波浪的阶段速度的限制。 显性时间整合计划取消了这种稳定性限制, 允许更大的时间步骤。 引入了第 4、 5 和 6 号命令的新的多步指数传播迭代法。 雅各比安的复杂步近近度应用到基于 Krylov 的 KITOPS( 克里洛夫, 功能不完全或高度分解程序解解解解解算法) 算法, 用标准基准评估结果。