Automatic evaluation of essay (AES) and also called automatic essay scoring has become a severe problem due to the rise of online learning and evaluation platforms such as Coursera, Udemy, Khan academy, and so on. Researchers have recently proposed many techniques for automatic evaluation. However, many of these techniques use hand-crafted features and thus are limited from the feature representation point of view. Deep learning has emerged as a new paradigm in machine learning which can exploit the vast data and identify the features useful for essay evaluation. To this end, we propose a novel architecture based on recurrent networks (RNN) and convolution neural network (CNN). In the proposed architecture, the multichannel convolutional layer learns and captures the contextual features of the word n-gram from the word embedding vectors and the essential semantic concepts to form the feature vector at essay level using max-pooling operation. A variant of RNN called Bi-gated recurrent unit (BGRU) is used to access both previous and subsequent contextual representations. The experiment was carried out on eight data sets available on Kaggle for the task of AES. The experimental results show that our proposed system achieves significantly higher grading accuracy than other deep learning-based AES systems and also other state-of-the-art AES systems.


翻译:由于Lunera、Udemy、Khan学院等在线学习和评价平台的兴起,对论文(AES)和所谓的自动作文评分的自动评价已成为一个严重问题。研究人员最近提出了许多自动评价技术。然而,许多这些技术使用手工制作的特征,因此从特征代表观点来看是有限的。深层次的学习已成为机器学习的新范例,可以利用庞大的数据,并查明作文评价的有用特征。为此,我们提议以经常性网络(RNN)和神经网络(CNN)等在线学习和评价平台为基础,建立一个新的结构。在拟议的结构中,多通道连带层学习并捕捉到从嵌入矢量的词中的n-gram字和基本语义概念的背景特征,以便利用最大组合操作在作文层次上形成特性矢量。RNNN的变式称为双层经常单元(BGRU),用于获取以前和以后的背景表现。在Kaglegle上提供的八套数据,用于AES基础任务。实验的结果是:AES系统的实验性结果显示,我们提议的系统在其他深层系统的精确度也大大高于其他系统。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员