In this paper, we consider the convex, finite-sum minimization problem with explicit convex constraints over strongly connected directed graphs. The constraint is an intersection of several convex sets each being known to only one node. To solve this problem, we propose a novel decentralized projected gradient scheme based on local averaging and prove its convergence using only local functions' smoothness.
翻译:在本文中,我们考虑了与紧密相连的定向图形存在明确硬化制约的细化、最小化和最小化的问题。 限制是几个小结组合的交叉点,每个小结点只知道一个节点。 为了解决这个问题,我们提议了一个以本地平均为基础的新的分散化预测梯度计划,并证明它只是使用本地功能的平稳性而趋同。