We consider federated learning in tiered communication networks. Our network model consists of a set of silos, each holding a vertical partition of the data. Each silo contains a hub and a set of clients, with the silo's vertical data shard partitioned horizontally across its clients. We propose Tiered Decentralized Coordinate Descent (TDCD), a communication-efficient decentralized training algorithm for such two-tiered networks. To reduce communication overhead, the clients in each silo perform multiple local gradient steps before sharing updates with their hub. Each hub adjusts its coordinates by averaging its workers' updates, and then hubs exchange intermediate updates with one another. We present a theoretical analysis of our algorithm and show the dependence of the convergence rate on the number of vertical partitions, the number of local updates, and the number of clients in each hub. We further validate our approach empirically via simulation-based experiments using a variety of datasets and objectives.
翻译:我们考虑在分层通信网络中进行联合学习。 我们的网络模型由一组各持有数据垂直分割的筒仓组成。 每个筒仓包含一个枢纽和一组客户, 筒仓的垂直数据碎片分布在其客户之间。 我们提议为这种双层网络使用一个通信效率高的分散式培训算法( TDCD ) 。 为了减少通信间接费用, 每个筒仓的客户在与其中心共享最新消息之前执行多个本地梯度步骤。 每个枢纽通过平均其工人更新信息调整其坐标, 然后中心中心相互交换中间更新信息。 我们对我们的算法进行理论分析, 并显示对垂直分割数量、 本地更新数量和每个枢纽的客户数的趋同率的依赖性。 我们用各种数据集和目标通过模拟实验进一步验证我们的做法。