This paper addresses the numerical simulation of nonlinear eigenvector problems such as the Gross-Pitaevskii and Kohn-Sham equation arising in computational physics and chemistry. These problems characterize critical points of energy minimization problems on the infinite-dimensional Stiefel manifold. To efficiently compute minimizers, we propose a novel Riemannian gradient descent method induced by an energy-adaptive metric. Quantified convergence of the methods is established under suitable assumptions on the underlying problem. A non-monotone line search and the inexact evaluation of Riemannian gradients substantially improve the overall efficiency of the method. Numerical experiments illustrate the performance of the method and demonstrates its competitiveness with well-established schemes.
翻译:本文论述计算物理和化学中产生的非线性树脂类成象学问题的数字模拟,如Gross-Pitaevskii和Kohn-Sham等方程式,这些问题是无限维度Stiefel 方块的能量最小化问题的关键特征。为了有效地计算最小化因素,我们提议了一种新型的里曼尼梯度下降法,由一种能适应性指标引致。在对根本问题的适当假设下,对方法进行了量化的趋同。非分子线搜索和对里曼尼梯度的不精确评估极大地提高了该方法的总体效率。数字实验展示了该方法的性能,并展示了该方法与既定方案的竞争力。