Magnetic resonance imaging (MRI) is a common and life-saving medical imaging technique. However, acquiring high signal-to-noise ratio MRI scans requires long scan times, resulting in increased costs and patient discomfort, and decreased throughput. Thus, there is great interest in denoising MRI scans, especially for the subtype of diffusion MRI scans that are severely SNR-limited. While most prior MRI denoising methods are supervised in nature, acquiring supervised training datasets for the multitude of anatomies, MRI scanners, and scan parameters proves impractical. Here, we propose Denoising Diffusion Models for Denoising Diffusion MRI (DDM$^2$), a self-supervised denoising method for MRI denoising using diffusion denoising generative models. Our three-stage framework integrates statistic-based denoising theory into diffusion models and performs denoising through conditional generation. During inference, we represent input noisy measurements as a sample from an intermediate posterior distribution within the diffusion Markov chain. We conduct experiments on 4 real-world in-vivo diffusion MRI datasets and show that our DDM$^2$ demonstrates superior denoising performances ascertained with clinically-relevant visual qualitative and quantitative metrics.
翻译:磁共振成像(MRI)是一种常见的、挽救生命的医疗成像技术。然而,获得高信号到噪音比率的MRI扫描需要很长的扫描时间,从而导致费用增加和病人不适和不适,并减少输送量。因此,人们非常希望取消MRI扫描,特别是严重限制SNR的传播性磁共振扫描的子类型。虽然大多数以前MRI脱色方法在性质上受到监督,但获得受监督的关于大量解剖术、MRI扫描仪和扫描参数的培训数据集证明不切实际。在这里,我们提议Denoising Difmission MRI的Dioisoising Difulation模型(DMM$2$2美元),这是对MRI使用扩散脱色分化模型进行自我监督的脱色方法。我们的三个阶段框架将基于统计的脱色理论纳入传播模型,并通过有条件的生成进行脱色分析。我们代表输入的噪音测量,作为在扩散量值达标的DOR2美元中进行中间远测测测测,我们在4个真实的流化数据中展示了真实性磁度数据。