Fair representation learning (FRL) is a popular class of methods aiming to produce fair classifiers via data preprocessing. However, recent work has shown that prior methods achieve worse accuracy-fairness tradeoffs than originally suggested by their results. This dictates the need for FRL methods that provide provable upper bounds on unfairness of any downstream classifier, a challenge yet unsolved. In this work we address this challenge and propose Fairness with Restricted Encoders (FARE), the first FRL method with provable fairness guarantees. Our key insight is that restricting the representation space of the encoder enables us to derive suitable fairness guarantees, while allowing empirical accuracy-fairness tradeoffs comparable to prior work. FARE instantiates this idea with a tree-based encoder, a choice motivated by inherent advantages of decision trees when applied in our setting. Crucially, we develop and apply a practical statistical procedure that computes a high-confidence upper bound on the unfairness of any downstream classifier. In our experimental evaluation on several datasets and settings we demonstrate that FARE produces tight upper bounds, often comparable with empirical results of prior methods, which establishes the practical value of our approach.


翻译:公平代表制学习(FRL)是通过数据预处理产生公平分类员的流行方法类别,然而,最近的工作表明,以往方法的准确性和公平性取舍比其结果的最初建议更差,这就要求FRL方法对任何下游分类员的不公平性提供可辨别的最高界限,这是一个挑战,但尚未解决。在这项工作中,我们处理这一挑战,并提议与受限制的分类员(FARE)公平性(FARE)(FRL)(这是第一个具有可辨别公平性保证的FRL方法)公平性。我们的主要见解是,限制编码员的代表权使我们能够获得适当的公平性保障,同时允许与先前工作相类似的经验性准确性-公平取舍。 FARE(FARE)将这一想法与基于树的编码器(一种基于决定树的内在优势的选择)一起快速地转化,而这种选择是我们在环境应用时受到决定树型分类员的固有优势所激发的。 从根本上说,我们制定并应用一种实用的统计程序,对任何下游分类员的不公平性进行高度信任性约束。 在对若干数据集和背景进行实验性评估时,我们证明FARELEAR产生较紧的上界限的价值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月17日
Arxiv
0+阅读 · 2022年11月16日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员