Contrastive representation learning is widely employed in visual recognition for geographic image data (remote-sensing such as satellite imagery or proximal sensing such as street-view imagery), but because of landscape heterogeneity, models can show disparate performance across spatial units. In this work, we consider fairness risks in land-cover semantic segmentation which uses pre-trained representation in contrastive self-supervised learning. We assess class distribution shifts and model prediction disparities across selected sensitive groups: urban and rural scenes for satellite image datasets and city GDP level for a street view image dataset. We propose a mutual information training objective for multi-level latent space. The objective improves feature identification by removing spurious representations of dense local features which are disparately distributed across groups. The method achieves improved fairness results and outperforms state-of-the-art methods in terms of precision-fairness trade-off. In addition, we validate that representations learnt with the proposed method include lowest sensitive information using a linear separation evaluation. This work highlights the need for specific fairness analyses in geographic images, and provides a solution that can be generalized to different self-supervised learning methods or image data. Our code is available at: https://anonymous.4open.science/r/FairDCL-1283


翻译:地理图象数据的视觉识别广泛采用相对代表制学习(遥感,如卫星图像或街道图像等近似遥感等遥感),但由于地貌差异性,模型可以显示不同空间单位的不同性能。在这项工作中,我们考虑土地覆盖的语义分割法中的公平风险,在对比性自我监督的学习中采用经过预先培训的表达法;我们评估了某些敏感群体之间的班级分布变化和模型预测差异:卫星图像数据集的城乡场景和街道图像数据集的市GDP水平。我们提出了多层潜层空间的相互信息培训目标。这个目标通过消除各组间分布不一的密集地方特征的虚假表现来改进特征识别。这个方法取得了更好的公平结果,在精确性自我监督交易方面优异于最先进的方法。此外,我们确认,从拟议方法中学到的表述方法包括使用线性分辨评估的最小敏感信息。我们的工作强调了在地理图中进行具体公正分析的必要性,并且提供了一种解决办法,可以普及到不同的自我监督/FDC的版本。我们现有的数据代码是:MAR4/FA学习法。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员