Stance detection models may tend to rely on dataset bias in the text part as a shortcut and thus fail to sufficiently learn the interaction between the targets and texts. Recent debiasing methods usually treated features learned by small models or big models at earlier steps as bias features and proposed to exclude the branch learning those bias features during inference. However, most of these methods fail to disentangle the ``good'' stance features and ``bad'' bias features in the text part. In this paper, we investigate how to mitigate dataset bias in stance detection. Motivated by causal effects, we leverage a novel counterfactual inference framework, which enables us to capture the dataset bias in the text part as the direct causal effect of the text on stances and reduce the dataset bias in the text part by subtracting the direct text effect from the total causal effect. We novelly model bias features as features that correlate with the stance labels but fail on intermediate stance reasoning subtasks and propose an adversarial bias learning module to model the bias more accurately. To verify whether our model could better model the interaction between texts and targets, we test our model on recently proposed test sets to evaluate the understanding of the task from various aspects. Experiments demonstrate that our proposed method (1) could better model the bias features, and (2) outperforms existing debiasing baselines on both the original dataset and most of the newly constructed test sets.


翻译:Stance 检测模型可能倾向于以文本部分的数据集偏差作为捷径,从而无法充分了解目标和文本之间的相互作用。最近的一些偏差方法通常将小模型或大模型在早期步骤中学到的特征作为偏差特征处理,并提议排除分支在推断过程中学习这些偏差特征。然而,这些方法大多没有将“好”的姿态特征和文本部分中的“坏”偏差特征分解开来。在本文中,我们调查如何减轻定位检测中的数据集偏差。受因果关系的影响,我们利用一个新的反事实推论框架,使我们能够将文本部分中的数据集偏差作为文本立场上的直接因果关系,并通过从整体因果关系效果中减去直接文本效应来减少文本部分的偏差。我们新颖地将偏差特征作为与“好”标签相关,但在中间姿态推理子任务上却失败的特征,并提议一个对抗偏差学习模块来更准确地模拟偏差。为了核实我们的模型能否更好地模拟原始文本和目标之间的相互作用,从而使我们能够将文本和具体目标部分的偏差作为文本的直接因果关系,我们测试最近提议的任务测试的模型的模型,以便更准确地评估现有各项任务测试基准。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员