Recently unsupervised representation learning (URL) has achieved remarkable progress in various scenarios. However, most methods are specifically designed based on specific data characters or task assumptions. Based on the manifold assumption, we regard most URL problems as an embedding problem that seeks an optimal low-dimensional representation of the given high-dimensional data. We split the embedding process into two steps, data structural modeling and low-dimensional embedding, and propose a general similarity-based framework called GenURL. Specifically, we provide a general method to model data structures by adaptively combining graph distances on the feature space and predefined graphs, then propose robust loss functions to learn the low-dimensional embedding. Combining with a specific pretext task, we can adapt GenURL to various URL tasks in a unified manner and achieve state-of-the-art performance, including self-supervised visual representation learning, unsupervised knowledge distillation, graph embeddings, and dimension reduction. Moreover, ablation studies of loss functions and basic hyper-parameter settings in GenURL illustrate the data characters of various tasks.
翻译:最近未经监督的演示学习(URL)在各种假设中取得了显著进展。然而,大多数方法都是根据具体的数据字符或任务假设而专门设计的。根据多重假设,我们认为大多数URL问题是一个嵌入问题,它寻求给定的高维数据的最佳低维代表。我们将嵌入过程分为两个步骤:数据结构模型和低维嵌入,并提议一个以一般相似性为基础的框架,称为GENURL。具体地说,我们为模型数据结构提供了一种一般方法,方法是将特征空间和预设图形的图形距离适应性地结合起来,然后提出强大的损失函数,以学习低维嵌入。与具体的借口任务相结合,我们可以使GENURL适应不同的URL,以统一的方式完成各种URL的任务,并实现最先进的性能,包括自我监督的视觉代表学习、不受监督的知识蒸馏、图形嵌入和维度的减少。此外,我们对GENURL的损失函数和基本超参数设置进行对比研究,以说明各种任务的数据字符。