This paper presents a novel adaptively connected neural network (ACNet) to improve the traditional convolutional neural networks (CNNs) {in} two aspects. First, ACNet employs a flexible way to switch global and local inference in processing the internal feature representations by adaptively determining the connection status among the feature nodes (e.g., pixels of the feature maps) \footnote{In a computer vision domain, a node refers to a pixel of a feature map{, while} in {the} graph domain, a node denotes a graph node.}. We can show that existing CNNs, the classical multilayer perceptron (MLP), and the recently proposed non-local network (NLN) \cite{nonlocalnn17} are all special cases of ACNet. Second, ACNet is also capable of handling non-Euclidean data. Extensive experimental analyses on {a variety of benchmarks (i.e.,} ImageNet-1k classification, COCO 2017 detection and segmentation, CUHK03 person re-identification, CIFAR analysis, and Cora document categorization) demonstrate that {ACNet} cannot only achieve state-of-the-art performance but also overcome the limitation of the conventional MLP and CNN \footnote{Corresponding author: Liang Lin (linliang@ieee.org)}. The code is available at \url{https://github.com/wanggrun/Adaptively-Connected-Neural-Networks}.


翻译:本文展示了一个创新的适应性连接神经网络(ACNet), 以改善传统的神经神经网络(CNNs) (in}) 两个方面。 首先, ACNet 采用灵活的方式,通过适应性地确定特征节点(例如, 地图的像素) \ footote 之间的连接状态,在计算机视觉域中,一个节点是指地貌地图的像素{,而在{图域,一个节点表示图表节点的节点。 。 我们可以显示,现有的CNN、经典多层透视(MLP)和最近提议的非本地网络(NLNNN)在处理内部特征描述时,转换全球和地方的推断都是ACNet(例如,地图的像素素) 。 其次, ACNet 还可以处理非欧洲大陆数据。 有关基准的种类(例如, 网络) 图像Net-1k分类、 CO 2017 检测和分节点 。 CUHKK- CROD 也只能证明作者/CRA 的绩效分析。

0
下载
关闭预览

相关内容

【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
专知会员服务
60+阅读 · 2020年3月19日
近期必读的12篇KDD 2019【图神经网络(GNN)】相关论文
专知会员服务
62+阅读 · 2020年1月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
20+阅读 · 2019年11月23日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能领域顶会IJCAI 2018 接受论文列表
专知
5+阅读 · 2018年5月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
20+阅读 · 2019年11月23日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员