Sidescan sonar intensity encodes information about the changes of surface normal of the seabed. However, other factors such as seabed geometry as well as its material composition also affect the return intensity. One can model these intensity changes in a forward direction from the surface normals from bathymetric map and physical properties to the measured intensity or alternatively one can use an inverse model which starts from the intensities and models the surface normals. Here we use an inverse model which leverages deep learning's ability to learn from data; a convolutional neural network is used to estimate the surface normal from the sidescan. Thus the internal properties of the seabed are only implicitly learned. Once this information is estimated, a bathymetric map can be reconstructed through an optimization framework that also includes altimeter readings to provide a sparse depth profile as a constraint. Implicit neural representation learning was recently proposed to represent the bathymetric map in such an optimization framework. In this article, we use a neural network to represent the map and optimize it under constraints of altimeter points and estimated surface normal from sidescan. By fusing multiple observations from different angles from several sidescan lines, the estimated results are improved through optimization. We demonstrate the efficiency and scalability of the approach by reconstructing a high-quality bathymetry using sidescan data from a large sidescan survey. We compare the proposed data-driven inverse model approach of modeling a sidescan with a forward Lambertian model. We assess the quality of each reconstruction by comparing it with data constructed from a multibeam sensor.
翻译:侧侧扫描声纳强度将关于海底表面正常度变化的信息编码起来。 但是, 诸如海底几何及其物质构成等其他因素也会影响回流强度。 您可以模拟这些强度变化, 从表层正常度向前的方向从测深图和物理属性向测测得强度的方向转变, 或者可以使用从强度和模型开始的表层正常度的反向模型。 我们在这里使用一个反向模型, 利用深度学习的能力从数据中学习; 使用动态神经网络从侧对表层正常度进行估计。 因此, 海底的内部特性只是隐含的学习。 一旦这一信息被估算出来, 就可以通过一个优化框架来重建测深度地图, 包括测深度读数, 以提供稀薄的深度剖面图, 作为制约。 最近提议进行隐性神经代表学习, 以这种优化框架来代表测深深深度的地图。 我们使用一个神经网络模型, 在高时空点和侧估计表正常度下对地图进行优化。 我们通过从不同角度进行多次比较对高清晰度观测, 从不同角度对高清晰度方向进行数据质量测量, 评估后, 我们通过从不同角度对数据方向进行一个分析, 以分析, 向方向进行一个分析, 显示一个我们通过分析, 向前向方向进行一个分析, 以分析, 显示一个模拟, 以显示一个模拟, 从不同角度对等深度的精确度的精确度测量测量,, 通过进行一个分析, 通过对数据分析, 通过对等测量路路路面进行一个分析, 分析, 。