Under the federated learning paradigm, a set of nodes can cooperatively train a machine learning model with the help of a centralized server. Such a server is also tasked with assigning a weight to the information received from each node, and often also to drop too-slow nodes from the learning process. Both decisions have major impact on the resulting learning performance, and can interfere with each other in counterintuitive ways. In this paper, we focus on edge networking scenarios and investigate existing and novel approaches to such model-weighting and node-dropping decisions. Leveraging a set of real-world experiments, we find that popular, straightforward decision-making approaches may yield poor performance, and that considering the quality of data in addition to its quantity can substantially improve learning.


翻译:在联合学习范式下,一组节点可以在中央服务器的帮助下合作培训机器学习模式。这样的服务器还负责对从每个节点收到的信息进行权重评估,并常常将学习过程中的偏差节点降低到太低的节点。 这两项决定对由此形成的学习表现有重大影响,并可能以反直觉的方式相互干扰。 在本文中,我们侧重于边缘网络情景,并调查现有和新颖的处理模式加权和节点倾斜决定的方法。 利用一系列现实世界实验,我们发现流行的、直接的决策方法可能会产生不良的绩效,而考虑数据质量以及数据的数量可以大大改善学习。

1
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月5日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
A Graph Auto-Encoder for Attributed Network Embedding
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年3月5日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
A Graph Auto-Encoder for Attributed Network Embedding
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Arxiv
3+阅读 · 2017年5月14日
Top
微信扫码咨询专知VIP会员