Answering questions related to audio-visual scenes, i.e., the AVQA task, is becoming increasingly popular. A critical challenge is accurately identifying and tracking sounding objects related to the question along the timeline. In this paper, we present a new Patch-level Sounding Object Tracking (PSOT) method. It begins with a Motion-driven Key Patch Tracking (M-KPT) module, which relies on visual motion information to identify salient visual patches with significant movements that are more likely to relate to sounding objects and questions. We measure the patch-wise motion intensity map between neighboring video frames and utilize it to construct and guide a motion-driven graph network. Meanwhile, we design a Sound-driven KPT (S-KPT) module to explicitly track sounding patches. This module also involves a graph network, with the adjacency matrix regularized by the audio-visual correspondence map. The M-KPT and S-KPT modules are performed in parallel for each temporal segment, allowing balanced tracking of salient and sounding objects. Based on the tracked patches, we further propose a Question-driven KPT (Q-KPT) module to retain patches highly relevant to the question, ensuring the model focuses on the most informative clues. The audio-visual-question features are updated during the processing of these modules, which are then aggregated for final answer prediction. Extensive experiments on standard datasets demonstrate the effectiveness of our method, achieving competitive performance even compared to recent large-scale pretraining-based approaches.
翻译:暂无翻译