Deep neural networks (DNNs) have become a key part of many modern software applications. After training and validating, the DNN is deployed as an irrevocable component and applied in real-world scenarios. Although most DNNs are built meticulously with huge volumes of training data, data in real-world still remain unknown to the DNN model, which leads to the crucial requirement of runtime out-of-distribution (OOD) detection. However, many existing approaches 1) need OOD data for classifier training or parameter tuning, or 2) simply combine the scores of each hidden layer as an ensemble of features for OOD detection. In this paper, we present a novel outlook on in-distribution data in a generative manner, which takes their latent features generated from each hidden layer as a joint distribution across representation spaces. Since only the in-distribution latent features are comprehensively understood in representation space, the internal difference between in-distribution and OOD data can be naturally revealed without the intervention of any OOD data. Specifically, We construct a generative model, called Latent Sequential Gaussian Mixture (LSGM), to depict how the in-distribution latent features are generated in terms of the trace of DNN inference across representation spaces. We first construct the Gaussian Mixture Model (GMM) based on in-distribution latent features for each hidden layer, and then connect GMMs via the transition probabilities of the inference traces. Experimental evaluations on popular benchmark OOD datasets and models validate the superiority of the proposed method over the state-of-the-art methods in OOD detection.


翻译:深神经网络(DNN)已成为许多现代软件应用的关键部分。在培训和验证后,DNN作为不可撤销的组成部分被部署,并应用于现实世界情景中。虽然大多数DNN是用大量培训数据精心构建的,但现实世界中的数据仍然为DNN模型所未知,这导致对分配时间流出(OOOD)检测的关键要求。然而,许多现有办法1需要OOD数据,用于分类培训或参数调控,或2)只是将每个隐藏层的分数作为OOD检测特征的组合组合组合。在本文件中,我们以一种基因化方式展示了对分配数据的新展望,将每个隐藏层产生的潜在特征作为代表空间的联合分布。由于在代表空间中只全面理解了在分配时间流出(OOOODD)数据之间的内部差异,因此在任何OODD数据的干预下,可以自然地披露OODD数据之间的内部差异差异。具体地,我们构建了一种归真性模型,叫做LEqent Sqourtial GA Mix (LSGMGM) 的移动数据在模型中首次构造上生成数据流流化数据。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2021年3月11日
Arxiv
9+阅读 · 2021年3月3日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员