Imitation learning (IL) algorithms have shown promising results for robots to learn skills from expert demonstrations. However, for versatile robots nowadays that need to learn diverse tasks, providing and learning the multi-task demonstrations all at once are both difficult. To solve this problem, in this work we study how to realize continual imitation learning ability that empowers robots to continually learn new tasks one by one, thus reducing the burden of multi-task IL and accelerating the process of new task learning at the same time. We propose a novel trajectory generation model that employs both a generative adversarial network and a dynamics prediction model to generate pseudo trajectories from all learned tasks in the new task learning process to achieve continual imitation learning ability. Our experiments on both simulation and real world manipulation tasks demonstrate the effectiveness of our method.
翻译:模拟学习(IL)算法已经为机器人从专家演示中学习技能展现出有希望的结果。然而,对于当今需要学习不同任务、同时提供和学习多任务演示的多功能机器人来说,现在既困难又困难。要解决这个问题,我们研究如何实现连续的模仿学习能力,使机器人能够不断逐项学习新任务,从而减轻多任务国际算法的负担,同时加快新任务学习进程。我们提议了一个新的轨迹生成模型,既使用基因对抗网络,又使用动态预测模型,从新任务学习过程中的所有学习任务中产生假轨迹,以取得不断模仿学习的能力。我们在模拟和实际世界操纵任务方面的实验显示了我们方法的有效性。