Dialogue state tracking (DST) module is an important component for task-oriented dialog systems to understand users' goals and needs. Collecting dialogue state labels including slots and values can be costly, especially with the wide application of dialogue systems in more and more new-rising domains. In this paper, we focus on how to utilize the language understanding and generation ability of pre-trained language models for DST. We design a dual prompt learning framework for few-shot DST. Specifically, we consider the learning of slot generation and value generation as dual tasks, and two prompts are designed based on such a dual structure to incorporate task-related knowledge of these two tasks respectively. In this way, the DST task can be formulated as a language modeling task efficiently under few-shot settings. Experimental results on two task-oriented dialogue datasets show that the proposed method not only outperforms existing state-of-the-art few-shot methods, but also can generate unseen slots. It indicates that DST-related knowledge can be probed from PLM and utilized to address low-resource DST efficiently with the help of prompt learning.
翻译:对话状态跟踪模块( DST) 是任务导向对话系统的重要组成部分, 以了解用户的目标和需求。 收集对话状态标签, 包括时间档和价值, 成本可能很高, 特别是在越来越多的新出现领域广泛应用对话系统。 在本文件中, 我们侧重于如何利用语言理解和培养DST 预先培训的语言模式的能力。 我们为少发DST设计了一个双向快速学习框架。 具体地说, 我们认为, 学习时间档生成和价值生成是双重任务, 并且根据这种双重结构设计了两个提示, 分别纳入与任务相关的知识。 这样, DST 任务就可以在少发的环境下作为语言建模任务。 两个任务导向对话数据集的实验结果显示, 拟议的方法不仅超越了现有最先进的少发方法, 还可以生成未知的空位。 它表明, DST 相关知识可以从 PLM 中探测, 并用于高效地解决低资源 DST, 有助于快速学习 。