Excessive alcohol consumption causes disability and death. Digital interventions are promising means to promote behavioral change and thus prevent alcohol-related harm, especially in critical moments such as driving. This requires real-time information on a person's blood alcohol concentration (BAC). Here, we develop an in-vehicle machine learning system to predict critical BAC levels. Our system leverages driver monitoring cameras mandated in numerous countries worldwide. We evaluate our system with n=30 participants in an interventional simulator study. Our system reliably detects driving under any alcohol influence (area under the receiver operating characteristic curve [AUROC] 0.88) and driving above the WHO recommended limit of 0.05g/dL BAC (AUROC 0.79). Model inspection reveals reliance on pathophysiological effects associated with alcohol consumption. To our knowledge, we are the first to rigorously evaluate the use of driver monitoring cameras for detecting drunk driving. Our results highlight the potential of driver monitoring cameras and enable next-generation drunk driver interaction preventing alcohol-related harm.
翻译:过度的饮酒会导致残疾和死亡。数字干预是促进行为改变的有希望的手段,从而预防与酒精相关的伤害,特别是在驾驶等关键时刻。这需要实时了解个人的血液酒精浓度(BAC)。在这里,我们开发一种车载机器学习系统,以预测关键的BAC水平。我们的系统利用了全球许多国家强制实施的驾驶员监控摄像头。我们在干预模拟器研究中对30名参与者进行了评估。我们的系统可可靠地检测出任何酒精影响下的驾驶(接收者操作特征曲线下的曲线面积[AUROC]0.88)和驾驶超过WHO推荐的0.05 g / dL BAC限制(AUROC 0.79)。模型检查揭示了与饮酒有关的病理生理效应的依赖。据我们所知,我们是第一个对驾驶员监控摄像头用于检测酒后驾驶进行严格评估的团队。我们的结果突显了驾驶员监控摄像头的潜力,并为防止与酒精相关的伤害开启了下一代醉酒驾驶交互。