Graph Neural Networks (GNNs) are a pertinent tool for any machine learning task due to their ability to learn functions over graph structures, a powerful and expressive data representation. The detection of communities, an unsupervised task has increasingly been performed with GNNs. Clustering nodes in a graph using the multi-dimensionality of node features with the connectivity of the graph has many applications to real world tasks from social networks to genomics. Unfortunately, there is currently a gap in the literature with no established sufficient benchmarking environment for fairly and rigorously evaluating GNN based community detection, thereby potentially impeding progress in this nascent field. We observe the particular difficulties in this setting is the ambiguous hyperparameter tuning environments combined with conflicting metrics of performance and evaluation datasets. In this work, we propose and evaluate frameworks for the consistent comparisons of community detection algorithms using GNNs. With this, we show the strong dependence of the performance to the experimental settings, exacerbated by factors such as the use of GNNs and the unsupervised nature of the task, providing clear motivation for the use of a framework to facilitate congruent research in the field.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员