Amplitude filtering is concerned with identifying basis-states in a superposition whose amplitudes are greater than a specified threshold; probability filtering is defined analogously for probabilities. Given the scarcity of qubits, the focus of this work is to design log-space algorithms for them. Both algorithms follow a similar pattern of estimating the amplitude (or, probability for the latter problem) of each state, in superposition, then comparing each estimate against the threshold for setting up a flag qubit upon success, finally followed by amplitude amplification of states in which the flag is set. We show how to implement each step using very few qubits by designing three subroutines. Our first algorithm performs amplitude amplification even when the "good state" operator has a small probability of being incorrect -- here we improve upon the space complexity of the previously known algorithms. Our second algorithm performs "true amplitude estimation" in roughly the same complexity as that of "amplitude estimation", which actually estimates a probability instead of an amplitude. Our third algorithm is for performing amplitude estimation in parallel (superposition) which is difficult when each estimation branch involves different oracles. As an immediate reward, we observed that the above algorithms for the filtering problems directly improved the upper bounds of problems such as non-linearity estimation and $k$-distinctness.


翻译:振幅过滤涉及在超位中确定基点状态,其振幅大于特定阈值; 概率过滤也相似地界定了概率。 由于qubit 稀缺, 这项工作的重点是设计它们的日志空间算法。 两种算法都遵循类似的模式来估计每个国家的振幅( 或, 后一个问题的概率 ), 在叠加中, 然后将每个估计值与在成功时设置旗点的阈值进行比较, 之后最后再对国旗所在的国家进行振幅放大。 我们通过设计三个子路程来显示如何使用非常少的Qqubit 执行每步。 我们的第一个算法在“ 好状态” 操作者有不正确的可能性时也会进行振幅振幅振幅振幅振荡。 我们在这里改进了先前已知的算法的空间复杂性。 我们的第二个算法在“ 振幅估计” 与“ 振幅估测值” 大致相同, 后者实际上估计了升幅的概率, 而不是一个振幅。 我们的第三个算法是, 当我们所观测到的每部的平级时, 的平级估测时, 将进行 的 的 的 的 直平级 直平级 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月28日
Towards Quantum Advantage on Noisy Quantum Computers
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月26日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员