We compare several stabilization methods in the context of isogeometric analysis and B-spline basis functions, using an advection-dominated advection\revision{-}diffusion as a model problem. We derive (1) the least-squares finite element method formulation using the framework of Petrov-Galerkin method with optimal test functions in the $L_2$ norm, which guarantee automatic preservation of the \emph{inf-sup} condition of the continuous formulation. We also combine it with the standard Galerkin method to recover (2) the Galerkin/least-squares formulation, and derive coercivity constant bounds valid for B-spline basis functions. The resulting stabilization method are compared with the least-squares and (3) the Streamline-Upwind Petrov-Galerkin (SUPG)method using again the Eriksson-Johnson model problem. The results indicate that least-squares (equivalent to Petrov-Galerkin with $L_2$-optimal test functions) outperforms the other stabilization methods for small P\'eclet numbers, while strongly advection-dominated problems are better handled with SUPG or Galerkin/least-squares.


翻译:暂无翻译

0
下载
关闭预览

相关内容

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
24+阅读 · 2024年3月25日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
漫谈机器阅读理解之Facebook提出的DrQA系统
深度学习每日摘要
18+阅读 · 2017年11月19日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
24+阅读 · 2024年3月25日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
漫谈机器阅读理解之Facebook提出的DrQA系统
深度学习每日摘要
18+阅读 · 2017年11月19日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员