It is well-known that the Bhattacharyya, Hellinger, Kullback-Leibler, $\alpha$-divergences, and Jeffreys' divergences between densities belonging to a same exponential family have generic closed-form formulas relying on the strictly convex and real-analytic cumulant function characterizing the exponential family. In this work, we report (dis)similarity formulas which bypass the explicit use of the cumulant function and highlight the role of quasi-arithmetic means and their multivariate mean operator extensions. In practice, these cumulant-free formulas are handy when implementing these (dis)similarities using legacy Application Programming Interfaces (APIs) since our method requires only to partially factorize the densities canonically of the considered exponential family.


翻译:众所周知,Bhattacharyya、Hellinger、Kullback-Leiber、$\alpha$-diverences和Jeffreys属于同一指数家族的密度差异之间有通用的封闭式公式,这些公式依赖纯粹的 convex 和真实分析的累积功能,以指数家族为特征。在这项工作中,我们报告(不同的)差异式公式,这些公式绕过对累积函数的明确使用,并突出准定量手段的作用及其多变量操作员平均扩展。 实际上,这些累积式公式在实施这些(不同)差异时,使用传统应用方案接口(APIs)是方便的,因为我们的方法只需要部分地将被视为指数型家庭的密度因素化。

0
下载
关闭预览

相关内容

ACM Conference on Designing Interactive Systems,即ACM SIGCHI交互系统设计会议(DIS),是一个顶级的国际舞台,在这里,设计师、艺术家、心理学家、用户体验研究人员、系统工程师以及更多人聚集在一起,讨论并塑造交互系统设计和实践的未来。DIS归ACM计算机与人交互特别兴趣小组(SIGCHI)所有。官网链接:http://dis2019.org/
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
6+阅读 · 2018年11月29日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Learning to Importance Sample in Primary Sample Space
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员