Let $P$ be a polyhedron, defined by a system $A x \leq b$, where $A \in Z^{m \times n}$, $rank(A) = n$, and $b \in Z^{m}$. In the Integer Feasibility Problem, we need to decide whether $P \cap Z^n = \emptyset$ or to find some $x \in P \cap Z^n$ in the opposite case. Currently, its state of the art algorithm, due to \cite{DadushDis,DadushFDim} (see also \cite{Convic,ConvicComp,DConvic} for more general formulations), has the complexity bound $O(n)^n \cdot poly(\phi)$, where $\phi = size(A,b)$. It is a long-standing open problem to break the $O(n)^n$ dimension-dependence in the complexity of ILP algorithms. We show that if the matrix $A$ has a small $l_1$ or $l_\infty$ norm, or $A$ is sparse and has bounded elements, then the integer feasibility problem can be solved faster. More precisely, we give the following complexity bounds \begin{gather*} \min\{\|A\|_{\infty}, \|A\|_1\}^{5 n} \cdot 2^n \cdot poly(\phi), \bigl( \|A\|_{\max} \bigr)^{5 n} \cdot \min\{cs(A),rs(A)\}^{3 n} \cdot 2^n \cdot poly(\phi). \end{gather*} Here $\|A\|_{\max}$ denotes the maximal absolute value of elements of $A$, $cs(A)$ and $rs(A)$ denote the maximal number of nonzero elements in columns and rows of $A$, respectively. We present similar results for the integer linear counting and optimization problems. Additionally, we apply the last result for multipacking and multicover problems on graphs and hypergraphs, where we need to choose a minimal/maximal multiset of vertices to cover/pack the edges by a prescribed number of times. For example, we show that the stable multiset and vertex multicover problems on simple graphs admit FPT-algorithms with the complexity bound $2^{O(|V|)} \cdot poly(\phi)$, where $V$ is the vertex set of a given graph.


翻译:LetsP$是一个多面值, 由一个系统 $A x\leq b$, 由 $A x\ 绝对= leq b$, $A\ $ 美元= 美元, $A = 美元, $b = 美元 美元 美元 。 在 Integer 可行性问题中, 我们需要决定 $P\ c = 美元 =\ 美元 = 美元 = c 美元 。 目前, 它的艺术算法状态, 由于\ cite { Dadush Dis, DadushFim} 美元, 美元 美元 美元 = 美元 = 美元, 美元 美元 = 美元 = 美元 = = 美元 = 美元 = 美元 = 美元 美元 = = = 美元 = = 美元 美元 = = = 美元 = 美元 = = = 美元 = = = = = = = 美元 美元 美元 美元 和 美元 美元 美元 = = = = maxxx

0
下载
关闭预览

相关内容

归纳逻辑程序设计(ILP)是机器学习的一个分支,它依赖于逻辑程序作为一种统一的表示语言来表达例子、背景知识和假设。基于一阶逻辑的ILP具有很强的表示形式,为多关系学习和数据挖掘提供了一种很好的方法。International Conference on Inductive Logic Programming系列始于1991年,是学习结构化或半结构化关系数据的首要国际论坛。最初专注于逻辑程序的归纳,多年来,它大大扩展了研究范围,并欢迎在逻辑学习、多关系数据挖掘、统计关系学习、图形和树挖掘等各个方面作出贡献,学习其他(非命题)基于逻辑的知识表示框架,探索统计学习和其他概率方法的交叉点。官网链接:https://ilp2019.org/
【2022新书】谱图理论,Spectral Graph Theory,100页pdf
专知会员服务
71+阅读 · 2022年4月15日
专知会员服务
82+阅读 · 2020年12月5日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员