Let $P$ be a polyhedron, defined by a system $A x \leq b$, where $A \in Z^{m \times n}$, $rank(A) = n$, and $b \in Z^{m}$. In the Integer Feasibility Problem, we need to decide whether $P \cap Z^n = \emptyset$ or to find some $x \in P \cap Z^n$ in the opposite case. Currently, its state of the art algorithm, due to \cite{DadushDis,DadushFDim} (see also \cite{Convic,ConvicComp,DConvic} for more general formulations), has the complexity bound $O(n)^n \cdot poly(\phi)$, where $\phi = size(A,b)$. It is a long-standing open problem to break the $O(n)^n$ dimension-dependence in the complexity of ILP algorithms. We show that if the matrix $A$ has a small $l_1$ or $l_\infty$ norm, or $A$ is sparse and has bounded elements, then the integer feasibility problem can be solved faster. More precisely, we give the following complexity bounds \begin{gather*} \min\{\|A\|_{\infty}, \|A\|_1\}^{5 n} \cdot 2^n \cdot poly(\phi), \bigl( \|A\|_{\max} \bigr)^{5 n} \cdot \min\{cs(A),rs(A)\}^{3 n} \cdot 2^n \cdot poly(\phi). \end{gather*} Here $\|A\|_{\max}$ denotes the maximal absolute value of elements of $A$, $cs(A)$ and $rs(A)$ denote the maximal number of nonzero elements in columns and rows of $A$, respectively. We present similar results for the integer linear counting and optimization problems. Additionally, we apply the last result for multipacking and multicover problems on graphs and hypergraphs, where we need to choose a minimal/maximal multiset of vertices to cover/pack the edges by a prescribed number of times. For example, we show that the stable multiset and vertex multicover problems on simple graphs admit FPT-algorithms with the complexity bound $2^{O(|V|)} \cdot poly(\phi)$, where $V$ is the vertex set of a given graph.
翻译:LetsP$是一个多面值, 由一个系统 $A x\leq b$, 由 $A x\ 绝对= leq b$, $A\ $ 美元= 美元, $A = 美元, $b = 美元 美元 美元 。 在 Integer 可行性问题中, 我们需要决定 $P\ c = 美元 =\ 美元 = 美元 = c 美元 。 目前, 它的艺术算法状态, 由于\ cite { Dadush Dis, DadushFim} 美元, 美元 美元 美元 = 美元 = 美元, 美元 美元 = 美元 = 美元 = = 美元 = 美元 = 美元 = 美元 美元 = = = 美元 = = 美元 美元 = = = 美元 = 美元 = = = 美元 = = = = = = = 美元 美元 美元 美元 和 美元 美元 美元 = = = = maxxx