Discrete point cloud objects lack sufficient shape descriptors of 3D geometries. In this paper, we present a novel method for aggregating hypothetical curves in point clouds. Sequences of connected points (curves) are initially grouped by taking guided walks in the point clouds, and then subsequently aggregated back to augment their point-wise features. We provide an effective implementation of the proposed aggregation strategy including a novel curve grouping operator followed by a curve aggregation operator. Our method was benchmarked on several point cloud analysis tasks where we achieved the state-of-the-art classification accuracy of 94.2% on the ModelNet40 classification task, instance IoU of 86.8 on the ShapeNetPart segmentation task, and cosine error of 0.11 on the ModelNet40 normal estimation task.
翻译:分点云天缺乏 3D 地理比例的足够形状描述符 。 在本文中, 我们展示了一种新颖的方法来汇总点云中的假设曲线。 连接点( 曲线) 的序列最初通过在点云中进行引导行走来分组, 之后又进行回归, 以增强其点性特征 。 我们有效执行了拟议的汇总战略, 包括一个新的曲线组合操作员, 并由曲线组合操作员跟踪 。 我们的方法以几个点云分析任务为基准, 我们根据模型Net40 的分类任务实现了94.2%的最新分类精确度, 例如 ShapeNetPart 的分类任务为86.8, ShapeNetPart 的分类任务为IoU, 在模型Net40 常规估算任务上为0.11 。