Few-shot learning arises in important practical scenarios, such as when a natural language understanding system needs to learn new semantic labels for an emerging, resource-scarce domain. In this paper, we explore retrieval-based methods for intent classification and slot filling tasks in few-shot settings. Retrieval-based methods make predictions based on labeled examples in the retrieval index that are similar to the input, and thus can adapt to new domains simply by changing the index without having to retrain the model. However, it is non-trivial to apply such methods on tasks with a complex label space like slot filling. To this end, we propose a span-level retrieval method that learns similar contextualized representations for spans with the same label via a novel batch-softmax objective. At inference time, we use the labels of the retrieved spans to construct the final structure with the highest aggregated score. Our method outperforms previous systems in various few-shot settings on the CLINC and SNIPS benchmarks.


翻译:在一些重要的实际假设中,例如当自然语言理解系统需要为新兴的资源隔离域学习新的语义标签时,会出现少见的学习。在本文中,我们探索了以检索为基础的方法,以在几个发件的设置中进行意向分类和空档填充任务。基于检索的方法根据检索索引中与输入相似的标签示例作出预测,从而可以仅仅通过改变索引而适应新的域,而不必再对模型进行再培训。然而,在诸如填充空档等复杂标签空间的任务中应用这种方法并非三重性。为此,我们提出一个跨级检索方法,通过新的批量软化目标来学习与同一标签相类似的背景显示。在推断时,我们使用检索区域中的标签来构建最后结构,总得分最高。我们的方法超越了CLINC和SNIPS基准中不同几发设置的系统。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
专知会员服务
197+阅读 · 2020年10月14日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
IJCAI2020信息抽取相关论文合集
AINLP
6+阅读 · 2020年6月16日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
12+阅读 · 2019年2月28日
VIP会员
相关VIP内容
专知会员服务
197+阅读 · 2020年10月14日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
IJCAI2020信息抽取相关论文合集
AINLP
6+阅读 · 2020年6月16日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Top
微信扫码咨询专知VIP会员