Recently, using diffusion models for zero-shot image restoration (IR) has become a new hot paradigm. This type of method only needs to use the pre-trained off-the-shelf diffusion models, without any finetuning, and can directly handle various IR tasks. The upper limit of the restoration performance depends on the pre-trained diffusion models, which are in rapid evolution. However, current methods only discuss how to deal with fixed-size images, but dealing with images of arbitrary sizes is very important for practical applications. This paper focuses on how to use those diffusion-based zero-shot IR methods to deal with any size while maintaining the excellent characteristics of zero-shot. A simple way to solve arbitrary size is to divide it into fixed-size patches and solve each patch independently. But this may yield significant artifacts since it neither considers the global semantics of all patches nor the local information of adjacent patches. Inspired by the Range-Null space Decomposition, we propose the Mask-Shift Restoration to address local incoherence and propose the Hierarchical Restoration to alleviate out-of-domain issues. Our simple, parameter-free approaches can be used not only for image restoration but also for image generation of unlimited sizes, with the potential to be a general tool for diffusion models. Code: https://github.com/wyhuai/DDNM/tree/main/hq_demo
翻译:最近,使用零光图像恢复的传播模型(IR)已成为一个新的热范式。这种类型的方法只需要使用事先训练过的零光图像恢复模型(IR),而不需要做任何微调,就可以直接处理各种IR任务。恢复性能的上限取决于经过训练的传播模型,这些模型正在迅速演化。然而,目前的方法只是讨论如何处理固定尺寸图像,而处理任意尺寸图像对于实际应用非常重要。本文件侧重于如何使用这些基于扩散的零光光光图像方法来处理任何大小,同时保持零光的出色特性。解决任意大小的简单方法是将其分成固定尺寸的补丁,独立解决每个补丁。但是,由于恢复功能既不能考虑所有补丁的全球性语义,也不能考虑邻近补丁的本地信息,因此,目前的方法只讨论固定尺寸,但处理任意大小的图像。我们建议使用mask-Shift Reformormal Reformation 来解决本地的不统一/中文本问题。我们使用无限的参数/中标/中程修复方法来恢复普通的图像。</s>