We introduce a new class of estimators for the linear response of steady states of stochastic dynamics. We generalize the likelihood ratio approach and formulate the linear response as a product of two martingales, hence the name "martingale product estimators". We present a systematic derivation of the martingale product estimator, and show how to construct such estimator so its bias is consistent with the weak order of the numerical scheme that approximates the underlying stochastic differential equation. Motivated by the estimation of transport properties in molecular systems, we present a rigorous numerical analysis of the bias and variance for these new estimators in the case of Langevin dynamics. We prove that the variance is uniformly bounded in time and derive a specific form of the estimator for second-order splitting schemes for Langevin dynamics. For comparison, we also study the bias and variance of a Green-Kubo estimator, motivated, in part, by its variance growing linearly in time. Presented analysis shows that the new martingale product estimators, having uniformly bounded variance in time, offer a competitive alternative to the traditional Green-Kubo estimator. We compare on illustrative numerical tests the new estimators with results obtained by the Green-Kubo method.
翻译:我们引入了一个新的测算器类别, 用于稳定随机动态状态的线性反应。 我们推广了概率比法, 并将线性反应作为两个测算器的产物, 也就是“ 配方产品估计器” 。 我们展示了马丁加勒产品估计器的系统衍生结果, 并展示了如何构建这样的测算器, 从而显示其偏差与接近基本随机差异方程的数值公式的微弱顺序相一致。 受分子系统运输特性估计的驱动, 我们对这些新测算器的偏差和差异进行了严格的数字分析。 我们证明, 差异在时间上是一致的, 并且为兰格温动态的二阶分裂计划提出了一种特定的测算器形式。 为了比较, 我们还研究了绿色库博测算器的偏差和差异, 其部分动机是时间线性增长。 当前的分析显示, 新的测算器是新的测算器, 与绿色测算器相比, 绿色测算器与绿色测算器之间的新的测算法, 提供了一种竞争性的替代方法。